Orientation

® Objective
® Contents
® QOrientation design principles
® QOrientation is an opportunity
® Limiting orientation modes supported by your app
® Limiting orientation modes on iOS
® Limiting orientation modes on Android
® Limiting orientation modes supported by a window
® Setting orientation summary
Reacting to orientation changes
® Splash screen support for various orientations
® References
® Summary

Objective

In this section, you will learn how you can handle device orientation. We'll take a look at your options for setting the Ul orientation. Then, we'll
show you how you can react to orientation changes within your app.

Contents

You have a few options for handling device orientation:

® Lock orientation for the whole app
® Lock the orientation for a given window
® React to orientation changes.

Before we begin, it's important to cover some caveats and subtleties on Android. With that platform, it's important that you keep in mind that the
orientation values you set don't match those you get. With Android, you can set the Ul orientation to any of four possibilities: portrait upright,
landscape right, portrait upside-down, and landscape left. But, when you request the current orientation, you'll get one of two values: portrait or
landscape. This is a platform feature, not a Titanium implementation issue.

A further consideration is that portrait and landscape vary between phones and tablets. A phone is in portrait mode when its "top" is at O degrees
(hardware buttons at the bottom) and landscape when the "top" is at 270 degrees. A tablet is in landscape mode when its top is at 0 and portrait
when its top is at 90 degrees. (Based on sensor degrees.) These portrait/landscape values are what you receive when you get the devices current
orientation.

With those caveats in mind, let's proceed...

Orientation design principles

Apple's Developer documentation says: "People expect to use your app in different orientations, and it's best when you can fulfill that
expectation." In other words, don't look at handling orientation as a bother but an opportunity.

Apple further recommends that when choosing to lock or support orientation, you should consider following these principles:

® On iPhone/iPod Touch — don't mix orientation of windows within a single app; so, either lock orientation for the whole app, or react to
orientation changes.

® On iPhone — don't support the portrait-upside-down orientation, because that could leave the user with their phone upside-down when
receiving a phone call.

® OniPad - you should support all orientations because that matches how people use those devices.

These same principles apply to an Android app as well.

Orientation is an opportunity

Rather than considering orientation a "necessary evil" to handle, think of it as an opportunity. When a user rotates their device, you could display
different content. Consider a recipe app that shows a list of ingredients when in portrait mode but shows cooking directions when the device is in
landscape mode. Some handsets mute the speaker when the device is face down. You can probably think of other interesting ways your app
could react to an orientation change.

Limiting orientation modes supported by your app

You specify the orientations your app can support by modifying the t i app. xm file. This type of configuration controls the splash screen
orientation possibilities. And it constrains which orientations the windows of your apps could possible show in, but not necessarily the orientation

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/UEBestPractices/UEBestPractices.html#//apple_ref/doc/uid/TP40006556-CH20-SW1

of a specific window.

The techniques for iOS and Android vary, so we'll look at them separately.

Limiting orientation modes on iOS

Specify the orientation modes the application needs to support with the Ul Support edl nt erf aceOri ent at i ons key in the iOS
plist section of the project's t i app. xm file.

By default, Titanium sets iPhone applications to support upright portrait only and iPad application to support all orientation modes.

tiapp.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<ti:app xmns:ti="http://ti.appcelerator.org">

<i os>
<plist>
<di ct >
<key>Ul Supportedl nterfaceOientati ons~i phone</ key>
<array>
<string>UlInterfaceOientationPortrait</string>
</ array>
<key>Ul Supportedl nterfaceOientations~i pad</ key>
<array>
<string>UInterfaceOrientationPortrait</string>
<string>U InterfaceOrientationPortraitUpsi deDown</string>
<string>UInterfaceOientationLandscapelLeft</string>
<string>UInterfaceOientati onLandscapeRi ght </string>
</array>
</dict>
</plist>
</ios>
</ti:app>

Limiting orientation modes on Android

Limiting orientation on Android can also be accomplished via the ti app. xm file, though not in the same way. The primary configuration file for
Android apps is the Andr oi dMani f est. xnl file. At build time, entries in your project's t i app. xm file are used to create the Android Manifest
that's packaged with your app. To force orientation support, you'll need to copy some entries from generated Android Manifest file back into ti ap
p. xm , modify them, then build your app again.

1. Build your app in Titanium.
2.
3.

Open the ti app. xm file and display its XML contents.
Next, you need to adjust the <andr oi d> node:
a. From the line that reads <andr oi d xm ns: andr oi d="htt p://schenas. andr oi d. coni apk/ r es/ andr oi d"/ >, delete
the "/" at the end (to change it from an empty tag to an opening tag).
b. Add a new closing </ andr oi d> tag
c. Between those tags, add new <mani f est ></ nani f est > tags.

. Open <PRQJECT_NAME>/ bui | d/ andr oi d/ Andr oi dMani f est. xm in Studio (or a text editor of your choice).
. Copy the <appl i cat i on> node, which contains all of the <act i vi t y> nodes from that file, for example:

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW10

AndroidManifest.xml

<?xm version="1.0" encodi ng="UTF-8"?>

<mani f est xnl ns: androi d="http://schemas. androi d. conf apk/res/ androi d"

package="com nyapp. app" androi d: ver si onCode="1" andr oi d: ver si onNane="1. 0" >
<uses-sdk androi d: m nSdkVer si on="10" androi d: t ar get SdkVer si on="19"/>

<l-- Start Copying Here -->

<appl i cation android:icon="@rawabe/ appi con" androi d: | abel =" MyApp"
andr oi d: nane="MappAppl i cati on" androi d: debuggabl e="f al se"
andr oi d: t hemre=" @&t yl e/ Thenme. AppConpat " >
<activity android: nane=". MyappActivity" android:|abel " @tring/ app_namne"
andr oi d: t henme=" @t yl e/ Thene. Ti t ani unt
andr oi d: confi gChanges="keyboar dHi dden| ori entati on| screenSi ze" >
<intent-filter>
<action androi d: name="andr oi d. i ntent. acti on. MAI N'/ >
<cat egory androi d: nane="androi d. i ntent. cat egory. LAUNCHER"/ >
</intent-filter>
</activity>
<activity android: nane="org. appcel erator.titaniumTi Activity"
andr oi d: confi gChanges="keyboar dHi dden| ori ent ati on| screenSi ze"/ >
<activity android: nane="org. appcel erator.tianiumTi Transl ucent Activity"
andr oi d: confi gChanges="keyboar dHi dden| ori ent ati on| screenSi ze"
andr oi d: t heme=" @t yl e/ Thene. AppConpat . Tr ansl ucent "/ >
<activity android: nane="ti.nodul es.titani umui.android. Ti PreferencesActivity"
andr oi d: confi gChanges="screenSi ze"/ >
</ application>

<l-- Stop Copying Here -->

<uses-perni ssion androi d: nane="andr oi d. perm ssi on. | NTERNET"/ >
<uses- perm ssi on androi d: nane="andr oi d. per n ssi on. ACCESS_W FI _STATE"/ >
<uses-perm ssi on androi d: nane="andr oi d. per n ssi on. ACCESS_NETWORK_STATE"/ >
<uses-perm ssion androi d: nane="androi d. perm ssi on. WRI TE_EXTERNAL_STORAGE"/ >
<uses-perm ssi on androi d: nane="andr oi d. perm ssi on. ACCESS_COARSE_LCOCATI ON'/ >
<uses-perm ssi on androi d: nane="andr oi d. per ni ssi on. ACCESS_FI NE_LOCATI ON'/ >
<uses-perm ssion androi d: nane="andr oi d. per ni ssi on. ACCESS_MOCK_LOCATI ON'/ >
</ mani f est >

6. Paste them between the <nani f est ></ mani f est > tags you added to the t i app. xnl file. From now on, each time your app is built,
Titanium will copy these activity tags to the Android Manifest file it generates. You're now ready to specify the Ul orientation.

7. For each activity tag, add the andr oi d: screenOri ent ati on attribute. Set it to the orientation type you want to use. For example, no
sensor locks the application in the device's preferred orientation mode, which is usually portrait for phones and landscape for tablets.
For a full list of orientation types, see http://developer.android.com/guide/topics/manifest/activity-element.html#screen.

The final manifest section of your t i app. xn file should look similar to the example below. If you need to debug the application, set the appl i ¢
at i on element's andr oi d: debuggabl e attribute to t r ue.

http://developer.android.com/guide/topics/manifest/activity-element.html#screen

tiapp.xml

<?xm version="1.0" encodi ng="UTF-8"?>
<ti:app xmns:ti="http://ti.appcelerator.org">
<andr oi d xm ns: androi d="http://schemas. androi d. coni apk/ res/ androi d"/ >
<mani f est >
<application android:icon="@rawabl e/ appi con"
andr oi d: | abel =" MyApp"
andr oi d: name="MyappAppl i cati on”
andr oi d: debuggabl e="f al se"
andr oi d: t heme=" @t yl e/ Thene. AppConpat " >
<activity android:screenOrientation="nosensor"
andr oi d: name=". MyappActivity"
andr oi d: | abel =" @t ri ng/ app_nane"
andr oi d: t heme=" @t yl e/ Thene. Ti t ani unt

andr oi d: confi gChanges="keyboar dHi dden| ori entati on| screenSi ze" >

<intent-filter>

<action android: name="androi d. i ntent.action. MAI N'/ >

<cat egory androi d: nane="andr oi d. i ntent. cat egory. LAUNCHER"/ >
</intent-filter>
</activity>
<activity android:screenOrientation="nosensor"

andr oi d: name="or g. appcel erator.titani um Ti Activity"

andr oi d: confi gChanges="keyboar dHi dden| ori ent ati on| screenSi ze"/ >
<activity android:screenOrientation="nosensor"

andr oi d: name="or g. appcel erator.titani um Ti Transl ucent Activity"

andr oi d: conf i gChanges="keyboar dHi dden| ori entati on| screenSi ze"
andr oi d: t heme=" @t yl e/ Therme. AppConpat . Tr ansl ucent "/ >
<activity android:screenOrientation="nosensor"

andr oi d: name="ti . nodul es. titanium ui.androi d. Ti PreferencesActivity"
andr oi d: confi gChanges="screenSi ze"/ >
</ application>
</ mani f est >
</ andr oi d>
</ti:app>

Limiting orientation modes supported by a window

The preceding techniques control the orientation modes supported by your entire app, including all its windows. But what if you want window A to
be in portrait while window B is in landscape? You can limit the orientation modes supported by a specific window by setting the window's ori en
t ati onMbdes property. This property accepts an array of Ti.UI constants that specify the window's permitted orientations. Remember, you must
have enabled the various orientations in the tiapp.xml before setting a window to that orientation.

1 i0S Platform Notes
Using the Window's or i ent at i onModes property to force the orientation of non-modal windows is considered a bad practice and will
not be supported, including forcing the orientation of windows inside a NavigationWindow or TabGroup.

Modal windows should not support orientation modes that the window they are opened over do not support. Doing
otherwise may cause bad visual/redraw behavior after the modal is dismissed, due to how iOS manages
modal transitions. If the ori ent at i onMbdes property of a modal window is undefined, then the
orientations supported by this window would be the orientation modes specified in the ti app. xm .

var win = Ti.U .createW ndow {
/* on Android, it needs to be a "heavywei ght" w ndow */
full screen: false,
/[* This works on i OS */
ori entationMdes: [
Ti. U .PORTRAIT,
Ti. U . UPSI DE PORTRAI T
]
1)
/1 but for Android using Titaniumprior to 2.1 you have to set it after creation
win.orientati onMbdes = [Ti. U .PORTRAI T, Ti.U .UPSI DE_PORTRAI T]

Setting orientation summary

® You want to limit to only portrait or to only landscape — set the desired orientation value in the t i app. xm as described in the "Limiting
orientation modes supported by your app" section above. You don't need to set wi n. ori ent ati onivbdes.

® You want to have some windows (or tabs) in one orientation and other windows in another orientation — enable each of the supported
orientations in t i app. xm , then specify each window orientation using the wi n. ori ent at i onMbdes property.

Reacting to orientation changes

The most powerful way to handle orientation is for your app to react to changes and update its Ul. You'd reposition buttons, images, and so forth
when the user turns their device. You detect orientation changes via the Ti . Gest ur e object.

Ti . Gesture. addEvent Li stener (' ori entati onchange', function(e) {
/1 get current device orientation from
[/ Titanium Gesture.orientation

/] get orientation fromevent object
/1 frome.orientation

/] Ti.Gesture.orientation should match e.orientation
/] but i0OS and Android will report different val ues

/1 two hel per nethods return a Bool ean
/1 e.source.isPortrait()
/'l e.source.isLandscape()

1)

If you've watched any of Kevin Whinnery's videos or read his Forging Titanium posts, you should be familiar with his recommendation to write
"component-oriented apps." In such apps, your Ul is divided into functional components that "know" how to update themselves. For example, if
you look at the finished code for our Local Data lab, you'll see that the table "knows" how to populate itself.

Following his technique, in the ori ent at i onchange event handler, you'd fire an app-level event using Ti . App. fi reEvent () . Within each of
your Ul components, you would have an app-level listener for that event which would update the component with new layout specifics.

https://wiki.appcelerator.org/display/guides2/Working+with+Local+Data+Sources

Ti . Gesture. addEvent Li stener (' ori entati onchange', function(e) {
Ti.App.fireEvent('orient', {portrait:e.source.isPortrait()});
1)
/'l ... elsewhere ...
var myCustonVi ew = function() {
var view = Ti. Ul .createVi ew{
top: 10,
| eft: 10,
/* etc */
s
Ti . App. addEvent Li stener (' orient', function(evt) ({
if(evt.portrait===true) {
view left = 10;
} else {
view. | eft = 50;

}
1)
}

1 Don't use orientation event listeners to force orientation support

Using events to limit supported orientations is not recommended. We've see community-contributed code that suggests you add an
orientation event listener in your app; when it fires, you'd set the window's orientation to a specific direction. The rationale is that doing
so provides a means to specify orientation without modifying the iOS or Android configuration files. We do not recommend this for a few
reasons:

® The app's screen could temporarily draw in the unwanted orientation before being forced back to the desired orientation.

® Adding an unnecessary "super-global" event listener opens the possibility of creating a memory leak. See the Managing
Memory and Finding Leaks guide for further information.

® And, why use a kludge when you could follow the proper technique to limit the orientation via settings in the configuration files?

Splash screen support for various orientations

Splash screens are shown when your app launches. A default PNG file is provided with a new Titanium project to be used as your app's splash
screen. You can change, but not remove entirely the splash screen: it is displayed while your app is launching and is removed when the
entry-point window of your app is ready for user interaction.

® Android
® The filename must be def aul t . png with a lowercase d. Because this is platform specific, this file will typically be found in your
project's Resour ces/ andr oi d directory.
® You can provide splash screen files specific to device resolution, density, and orientation on Android. Because the same rules
that apply to Android images apply to splash screens, you can follow the conventions discussed in Images and ImageView APIs.

®* iOS
® The filename must be Def aul t . png with an uppercase D. Because this is platform specific, this file will typically be found in
your project's Resour ces/ i phone directory.
® You can provide a retina version of your splash screen, named Def aul t @x. png.
® ForiPad and Universal apps, you should supply Def aul t - Landscape. png and Def aul t - Portrai t. png iPad splash screen
files.
References

® Developer Blog — Android Window Orientation Behavior Change for 1.7.2
® Layouts Positioning and the View Hierarchy

Summary

In this section, you learned how to specify, detect, and react to device orientation. You learned can lock the orientation of the entire app, specify
the orientation of a window within your app, or react to orientation changes dynamically.

https://wiki.appcelerator.org/display/guides2/Images+and+ImageView+APIs
http://developer.appcelerator.com/blog/2011/07/android-window-orientation-behavior-change-for-1-7-2.html
https://wiki.appcelerator.org/display/guides2/Layouts+Positioning+and+the+View+Hierarchy
https://wiki.appcelerator.org/display/guides2/Managing+Memory+and+Finding+Leaks
https://wiki.appcelerator.org/display/guides2/Managing+Memory+and+Finding+Leaks

	Orientation

