
Orientation
Objective
Contents

Orientation design principles
Orientation is an opportunity

Limiting orientation modes supported by your app
Limiting orientation modes on iOS
Limiting orientation modes on Android
Limiting orientation modes supported by a window
Setting orientation summary

Reacting to orientation changes
Splash screen support for various orientations
References

Summary

Objective
In this section, you will learn how you can handle device orientation. We'll take a look at your options for setting the UI orientation. Then, we'll
show you how you can react to orientation changes within your app.

Contents
You have a few options for handling device orientation:

Lock orientation for the whole app
Lock the orientation for a given window
React to orientation changes.

Before we begin, it's important to cover some caveats and subtleties on Android. With that platform, it's important that you keep in mind that the
orientation values you don't match those you . With Android, you can set the UI orientation to any of four possibilities: portrait upright,set get
landscape right, portrait upside-down, and landscape left. But, when you request the current orientation, you'll get one of two values: portrait or
landscape. This is a feature, not a Titanium implementation issue.platform

A further consideration is that portrait and landscape vary between phones and tablets. A phone is in portrait mode when its "top" is at 0 degrees
(hardware buttons at the bottom) and landscape when the "top" is at 270 degrees. A tablet is in landscape mode when its top is at 0 and portrait
when its top is at 90 degrees. (Based on sensor degrees.) These portrait/landscape values are what you receive when you the devices currentget
orientation.

With those caveats in mind, let's proceed...

Orientation design principles

Apple's Developer documentation says: "People expect to use your app in different orientations, and it’s best when you can fulfill that
expectation." In other words, don't look at handling orientation as a bother but an opportunity.

Apple further recommends that when choosing to lock or support orientation, you should consider following these principles:

On iPhone/iPod Touch – don't mix orientation of windows within a single app; so, either lock orientation for the whole app, or react to
orientation changes.
On iPhone – don't support the portrait-upside-down orientation, because that could leave the user with their phone upside-down when
receiving a phone call.
On iPad – you should support all orientations because that matches how people use those devices.

These same principles apply to an Android app as well.

Orientation is an opportunity

Rather than considering orientation a "necessary evil" to handle, think of it as an opportunity. When a user rotates their device, you could display
different content. Consider a recipe app that shows a list of ingredients when in portrait mode but shows cooking directions when the device is in
landscape mode. Some handsets mute the speaker when the device is face down. You can probably think of other interesting ways your app
could react to an orientation change.

Limiting orientation modes supported by your app

You specify the orientations your app can support by modifying the file. This type of configuration controls the splash screentiapp.xml
orientation possibilities. And it constrains which orientations the windows of your apps could possible show in, but not necessarily the orientation

http://developer.apple.com/library/ios/#documentation/UserExperience/Conceptual/MobileHIG/UEBestPractices/UEBestPractices.html#//apple_ref/doc/uid/TP40006556-CH20-SW1

1.
2.
3.

a.

b.
c.

4.
5.

of a specific window.

The techniques for iOS and Android vary, so we'll look at them separately.

Limiting orientation modes on iOS

Specify the orientation modes the application needs to support with the UISupportedInterfaceOrientations key in the iOS
plist section of the project's file.tiapp.xml

By default, Titanium sets iPhone applications to support upright portrait only and iPad application to support all orientation modes.

<?xml version="1.0" encoding="UTF-8"?>
<ti:app xmlns:ti="http://ti.appcelerator.org">
 <ios>
 <plist>
 <dict>
 <key>UISupportedInterfaceOrientations~iphone</key>
 <array>
 <string>UIInterfaceOrientationPortrait</string>
 </array>
 <key>UISupportedInterfaceOrientations~ipad</key>
 <array>
 <string>UIInterfaceOrientationPortrait</string>
 <string>UIInterfaceOrientationPortraitUpsideDown</string>
 <string>UIInterfaceOrientationLandscapeLeft</string>
 <string>UIInterfaceOrientationLandscapeRight</string>
 </array>
 </dict>
 </plist>
 </ios>
</ti:app>

Limiting orientation modes on Android

Limiting orientation on Android can also be accomplished via the file, though not in the same way. The primary configuration file fortiapp.xml
Android apps is the file. At build time, entries in your project's file are used to create the Android Manifest AndroidManifest.xml tiapp.xml
that's packaged with your app. To force orientation support, you'll need to copy some entries from generated Android Manifest file back into tiap

, modify them, then build your app again.p.xml

Build your app in Titanium.
Open the file and display its XML contents.tiapp.xml
Next, you need to adjust the node:<android>

From the line that reads , delete<android xmlns:android="http://schemas.android.com/apk/res/android"/>
the "/" at the end (to change it from an empty tag to an opening tag).
Add a new closing tag</android>
Between those tags, add new tags.<manifest></manifest>

Open in Studio (or a text editor of your choice).<PROJECT_NAME>/build/android/AndroidManifest.xml
Copy the node, which contains all of the nodes from that file, for example: <application> <activity>

tiapp.xml

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/iPhoneOSKeys.html#//apple_ref/doc/uid/TP40009252-SW10

5.

6.

7.

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.myapp.app" android:versionCode="1" android:versionName="1.0">
 <uses-sdk android:minSdkVersion="10" android:targetSdkVersion="19"/>

 <!-- Start Copying Here -->

 <application android:icon="@drawabe/appicon" android:label="MyApp"
android:name="MyappApplication" android:debuggable="false"
android:theme="@style/Theme.AppCompat">
 <activity android:name=".MyappActivity" android:label"@string/app_name"
android:theme="@style/Theme.Titanium"
android:configChanges="keyboardHidden|orientation|screenSize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name="org.appcelerator.titanium.TiActivity"
android:configChanges="keyboardHidden|orientation|screenSize"/>
 <activity android:name="org.appcelerator.tianium.TiTranslucentActivity"
android:configChanges="keyboardHidden|orientation|screenSize"
android:theme="@style/Theme.AppCompat.Translucent"/>
 <activity android:name="ti.modules.titanium.ui.android.TiPreferencesActivity"
android:configChanges="screenSize"/>
 </application>

 <!-- Stop Copying Here -->

 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"/>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
 <uses-permission android:name="android.permission.ACCESS_MOCK_LOCATION"/>
</manifest>

Paste them between the tags you added to the file. From now on, each time your app is built,<manifest></manifest> tiapp.xml
Titanium will copy these activity tags to the Android Manifest file it generates. You're now ready to specify the UI orientation.
For each activity tag, add the attribute. Set it to the orientation type you want to use. For example, android:screenOrientation no

 locks the application in the device's preferred orientation mode, which is usually portrait for phones and landscape for tablets.sensor
 For a full list of orientation types, see .http://developer.android.com/guide/topics/manifest/activity-element.html#screen

The final manifest section of your file should look similar to the example below. If you need to debug the application, set the tiapp.xml applic
 element's attribute to .ation android:debuggable true

AndroidManifest.xml

http://developer.android.com/guide/topics/manifest/activity-element.html#screen

<?xml version="1.0" encoding="UTF-8"?>
<ti:app xmlns:ti="http://ti.appcelerator.org">
 <android xmlns:android="http://schemas.android.com/apk/res/android"/>
 <manifest>
 <application android:icon="@drawable/appicon"
 android:label="MyApp"
 android:name="MyappApplication"
 android:debuggable="false"
 android:theme="@style/Theme.AppCompat">
 <activity android:screenOrientation="nosensor"
 android:name=".MyappActivity"
 android:label="@string/app_name"
 android:theme="@style/Theme.Titanium"

android:configChanges="keyboardHidden|orientation|screenSize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:screenOrientation="nosensor"
 android:name="org.appcelerator.titanium.TiActivity"

android:configChanges="keyboardHidden|orientation|screenSize"/>
 <activity android:screenOrientation="nosensor"

android:name="org.appcelerator.titanium.TiTranslucentActivity"

android:configChanges="keyboardHidden|orientation|screenSize"
 android:theme="@style/Theme.AppCompat.Translucent"/>
 <activity android:screenOrientation="nosensor"

android:name="ti.modules.titanium.ui.android.TiPreferencesActivity"
 android:configChanges="screenSize"/>
 </application>
 </manifest>
 </android>
</ti:app>

Limiting orientation modes supported by a window

The preceding techniques control the orientation modes supported by your entire app, including all its windows. But what if you want window A to
be in portrait while window B is in landscape? You can limit the orientation modes supported by a specific window by setting the window's orien

 property. This property accepts an array of Ti.UI constants that specify the window's permitted orientations. Remember, you musttationModes
have enabled the various orientations in the tiapp.xml before setting a window to that orientation.

tiapp.xml

iOS Platform Notes
Using the Window's property to force the orientation of non-modal windows is considered a bad practice and willorientationModes
not be supported, including forcing the orientation of windows inside a NavigationWindow or TabGroup.

Modal windows should not support orientation modes that the window they are opened over do not support. Doing
otherwise cause may bad visual/redraw behavior after the modal is dismissed, due to how iOS manages
modal transitions. If the property of a orientationModes modal window is undefined, then the
orientations supported by this window would be the orientation modes specified in the .tiapp.xml

var win = Ti.UI.createWindow({
 /* on Android, it needs to be a "heavyweight" window */
 fullscreen: false,
 /* This works on iOS */
 orientationModes: [
 Ti.UI.PORTRAIT,
 Ti.UI.UPSIDE_PORTRAIT
]
});
// but for Android using Titanium prior to 2.1 you have to set it after creation
win.orientationModes = [Ti.UI.PORTRAIT, Ti.UI.UPSIDE_PORTRAIT]

Setting orientation summary

You want to limit to only portrait or to only landscape – set the desired orientation value in the as described in the "Limitingtiapp.xml
orientation modes supported by your app" section above. You don't need to set .win.orientationModes
You want to have some windows (or tabs) in one orientation and other windows in another orientation – enable each of the supported
orientations in , then specify each window orientation using the property.tiapp.xml win.orientationModes

Reacting to orientation changes

The most powerful way to handle orientation is for your app to react to changes and update its UI. You'd reposition buttons, images, and so forth
when the user turns their device. You detect orientation changes via the object.Ti.Gesture

Ti.Gesture.addEventListener('orientationchange',function(e) {
 // get current device orientation from
 // Titanium.Gesture.orientation

 // get orientation from event object
 // from e.orientation

 // Ti.Gesture.orientation should match e.orientation
 // but iOS and Android will report different values

 // two helper methods return a Boolean
 // e.source.isPortrait()
 // e.source.isLandscape()
});

If you've watched any of Kevin Whinnery's videos or read his Forging Titanium posts, you should be familiar with his recommendation to write
"component-oriented apps." In such apps, your UI is divided into functional components that "know" how to update themselves. For example, if
you look at the finished code for our lab, you'll see that the table "knows" how to populate itself.Local Data

Following his technique, in the event handler, you'd fire an app-level event using . Within each oforientationchange Ti.App.fireEvent()
your UI components, you would have an app-level listener for that event which would update the component with new layout specifics.

https://wiki.appcelerator.org/display/guides2/Working+with+Local+Data+Sources

Ti.Gesture.addEventListener('orientationchange',function(e) {
 Ti.App.fireEvent('orient', {portrait:e.source.isPortrait()});
});
// ... elsewhere ...
var myCustomView = function() {
 var view = Ti.UI.createView({
 top:10,
 left:10,
 /* etc */
 });
 Ti.App.addEventListener('orient', function(evt) {
 if(evt.portrait===true) {
 view.left = 10;
 } else {
 view.left = 50;
 }
 });
}

Splash screen support for various orientations

Splash screens are shown when your app launches. A default PNG file is provided with a new Titanium project to be used as your app's splash
screen. You can change, but not remove entirely the splash screen: it is displayed while your app is launching and is removed when the
entry-point window of your app is ready for user interaction.

Android
The filename must be with a lowercase . Because this is platform specific, this file will typically be found in yourdefault.png d
project's directory.Resources/android
You can provide splash screen files specific to device resolution, density, and orientation on Android. Because the same rules
that apply to Android images apply to splash screens, you can follow the conventions discussed in .Images and ImageView APIs

iOS
The filename must be with an uppercase . Because this is platform specific, this file will typically be found inDefault.png D
your project's directory.Resources/iphone
You can provide a retina version of your splash screen, named .Default@2x.png
For iPad and Universal apps, you should supply and iPad splash screenDefault-Landscape.png Default-Portrait.png
files.

References

Developer Blog – Android Window Orientation Behavior Change for 1.7.2
Layouts Positioning and the View Hierarchy

Summary
In this section, you learned how to specify, detect, and react to device orientation. You learned can lock the orientation of the entire app, specify
the orientation of a window within your app, or react to orientation changes dynamically.

Don't use orientation event listeners to force orientation support

Using events to limit supported orientations is not recommended. We've see community-contributed code that suggests you add an
orientation event listener in your app; when it fires, you'd set the window's orientation to a specific direction. The rationale is that doing
so provides a means to specify orientation without modifying the iOS or Android configuration files. We do not recommend this for a few
reasons:

The app's screen could temporarily draw in the unwanted orientation before being forced back to the desired orientation.
Adding an unnecessary "super-global" event listener opens the possibility of creating a memory leak. See the Managing

 guide for further information.Memory and Finding Leaks
And, why use a kludge when you could follow the proper technique to limit the orientation via settings in the configuration files?

https://wiki.appcelerator.org/display/guides2/Images+and+ImageView+APIs
http://developer.appcelerator.com/blog/2011/07/android-window-orientation-behavior-change-for-1-7-2.html
https://wiki.appcelerator.org/display/guides2/Layouts+Positioning+and+the+View+Hierarchy
https://wiki.appcelerator.org/display/guides2/Managing+Memory+and+Finding+Leaks
https://wiki.appcelerator.org/display/guides2/Managing+Memory+and+Finding+Leaks

	Orientation

