
Appcelerator CLI Tasks
This document provides information on how to build cloud and mobile applications with Appcelerator CLI.

Build cloud applications
Create an Arrow project
Run an Arrow project
Publish an Arrow project to Arrow Cloud
Generate Cloud components

Build mobile applications
Create a Alloy project
Create a Titanium Classic project
Build an Alloy or Titanium Classic project

Android emulator
Android device
iOS simulator
iOS device
Windows Phone emulator
Windows Phone cevice
Windows computer

Package an application
Google Play APK
iOS ad hoc distribution
iTunes store
Windows Phone Store
Windows Store

Clean your build folder

Build cloud applications
For more tasks, see .API Builder Tools Project

Create an Arrow project

To create a new Arrow project, run the command. The CLI will prompt you to fill in the necessary information to create a project, suchappc new
as the name of the project. To create a new project with all the information specified in the command, run:

appc new -t arrow -n <PROJECT_NAME>

Run an Arrow project

To run an Arrow project locally, run the command from the project directory.appc run

Publish an Arrow project to Arrow Cloud

To deploy your Arrow application to the Arrow Cloud, run the command from the project directory.appc publish

Generate Cloud components

To generate components, such as Models, Connectors, or Block, for your Arrow projects, run the command. When promptedappc generate
for the type of component, select , then follow the subsequent directions.Arrow Component

The components generated by the command are modular components that need to be published using the command, thenappc publish
installed to your Arrow projects using the command.appc install

Build mobile applications
Once you have your development environment correctly configured, you can create and build mobile applications.

Create a Alloy project

An alloy project will be created by default when the command is run. The CLI will prompt you to fill in the necessary information toappc new
create a project, such as which platforms the application runs on and the name of the project. To create a new project with all the information
specified in the command, run:

appc new -t app --id <APP_ID> -n <APP_NAME>
Example
appc new -t app --id com.appcelerator.sample -n SampleProject

A new app will be created for all supported platforms by default, depending on the operating system.

Create a Titanium Classic project

To create a classic Titanium project, follow the same directions when creating an Alloy project, except add the flag to generate a--classic
Titanium classic project.

appc new -t app --id <APP_ID> -n <APP_NAME> --classic

Build an Alloy or Titanium Classic project

To build an Alloy or Titanium project to test on a device, simulator or emulator, run the command from the project directory. The CLIappc run
will prompt you to fill in the necessary information to build the project, such as which platform you want build the project for. More detailed
examples are listed below.

Once the application is installed and launched, use native tools to test, debug and profile your application. See .Debugging and Profiling

Android emulator

You need to create an Android emulator or setup Genymotion before running these commands.

To create an Android emulator, see .Native Android Debugging and Testing Tools: Creating an emulator
To setup Genymotion, see .Installing Genymotion

To build for an emulator, run . Because no other options were specified, the CLI launches your default Android emulatorappc run -p android
and installs the application on it.

To launch a specific Android or Genymotion emulator, add the option.-C <EMULATOR_NAME>

appc run -p android -C "Google Nexus 7 - 4.4.2 - API 19 - 800x1280"

To retrieve a list of Android or Genymotion emulators, run the command.ti info -p android

Android device

To build for an Android device, connect your device to the computer with a USB cable, then run:

1.

2.
3.

4.

SDK version setting precedence

The CLI checks several settings to see which SDK version to use to build your application. The following is a list of locations in the
order of precedence. If an SDK version is not defined in that location, the next location is checked.

tiapp.xml file version specified with the tag.sdk-version
To change this version, manually edit the file with a text editor or use Studio.tiapp.xml
--sdk command-line option with the command.appc run
app.sdk setting specified with the command.appc ti config
To check the version, run and to change the version, run .appc ti config appc ti config app.sdk <sdk_version>
SDK select version.
To check or change this version, run .appc ti sdk select

https://wiki.appcelerator.org/display/guides2/Debugging+and+Profiling
https://wiki.appcelerator.org/display/guides2/Native+Android+Debugging+and+Testing+Tools#NativeAndroidDebuggingandTestingTools-Creatinganemulator
https://wiki.appcelerator.org/display/guides2/Installing+Genymotion

appc run -p android -T device -C <DEVICE_ID>
Example
appc run -p android -T device -C deadbeef

iOS simulator

To build for an iOS simulator, run . Because no other options were specified, the CLI launches the application on the defaultappc run -p ios
iOS simulator.

To use a specific simulator, add the option.-C <DEVICE_UDID>

appc run -p ios -C "D27F9E87-7E09-48D8-9DD1-10277A0B51A"

To retrieve the simulator's UDID, run the command.appc ti info -p ios

iOS device

Before deploying to an iOS device for testing, you need to generate a development certificate and development provisioning profile. See Deployin
.g to iOS devices

The CLI allows you to install your application either to iTunes or directly to the device connected to your computer with a USB cable. If you select
to install to iTunes, you need to sync your device to iTunes in order to install the application.

To build for an iOS device, run:

appc run -p ios -T device -C <DEVICE_UDID> [-V "<DEVELOPER_CERTIFICATE_NAME>" -P
<PROVISIONING_PROFILE_UUID>]
Example
appc run -p ios -T device -C itunes -V "Loretta Martin (GE7BAC5)" -P
"11111111-2222-3333-4444-555555555555"
appc run -p ios -T device -C "iOS Device" -V "Loretta Martin (GE7BAC5)" -P
"11111111-2222-3333-4444-555555555555"

If you omit the and options, the CLI will prompt you with options. You can also retrieve the information from Xcode's Devices window or-V -P
with the command.appc ti info -p ios

Windows Phone emulator

To build for a Windows Phone emulator, you need to obtain your Windows publisher ID. After you have created your Windows Dev Center
account, log in to to get your publish GUID. https://dev.windowsphone.com/en-us/Account/Summary

To build for a Windows Phone emulator, run:

appc run -p windows [-C <DEVICE_UDID> -I <WINDOWS_PUBLISHER_ID>]
Example
appc run -p windows -C 8-1-1 -I "CN=00000000-0000-1000-8000-000000000000"

If you omit any of the optional parameters, the CLI will prompt you with options.

Windows Phone emulator requires CLI and SDK 4.1.0 or later.

Windows Phone Publisher GUID
Prior to Release 5.0.0, you need to pass the option with your Windows Phone Publisher GUID rather than using the option with-G -I
your Windows Publisher ID.

https://wiki.appcelerator.org/display/guides2/Deploying+to+iOS+devices
https://wiki.appcelerator.org/display/guides2/Deploying+to+iOS+devices
https://dev.windowsphone.com/en-us/Account/Summary

Windows Phone cevice

To build for a Windows Phone emulator, you need to obtain your Windows publisher ID. After you have created your Windows Dev Center
account, log in to to get your publish GUID. https://dev.windowsphone.com/en-us/Account/Summary

To deploy to a Windows Phone device, connect the device to your computer with a USB cable, then run:

appc run -p windows -T wp-device [-C <DEVICE_UDID> -I <WINDOWS_PUBLISHER_ID>]
Example
appc run -p windows -T wp-device -C 0 -I "CN=00000000-0000-1000-8000-000000000000"

If you omit any of the optional parameters, the CLI will prompt you with options.

Windows computer

To deploy the application to your local Windows machine, you will need a certificate. If you do not have a certificate, the CLI will launch the
certificate maker for your to create one.

To deploy to your local machine, run:

appc run -p windows -T ws-local [-R <PFX_CERTIFICATE_FILE> -P <PFX_PASSWORD> -I
<WINDOWS_PUBLISHER_ID>]

If you omit any of the optional parameters, the CLI will prompt you with options. Prior to Release 5.0.0, the option was not required.-I

Package an application

To package a mobile application, run the command from the project directory.appc run

Google Play APK

Before packaging an APK file for distribution, you need to generate a keypair and certificate for your application. See .Distributing Android apps

To package an APK for Google Play, run:

appc run -p android -T dist-playstore [-K <KEYSTORE_FILE> -P <KEYSTORE_PASSWORD> -L
<KEYSTORE_ALIAS> -O <OUTPUT_DIRECTORY>]
Example
appc run -p android -T dist-playstore -K ~/android.keystore -P secret -L foo -O
./dist/

If you omit any of the optional parameters, you will be prompted by the CLI to enter these values. If the password for the private key of the
keystore is different from the password for the keystore, add the option with the password of your private key.--key-password <KEYPASS>

iOS ad hoc distribution

Windows Phone emulator requires CLI and SDK 4.1.0 or later.

Windows Phone Publisher GUID
Prior to Release 5.0.0, you need to pass the option with your Windows Phone Publisher GUID rather than using the option with-G -I
your Windows Publisher ID.

Windows Phone emulator requires CLI and SDK 4.1.0 or later.

https://dev.windowsphone.com/en-us/Account/Summary
https://wiki.appcelerator.org/display/guides2/Distributing+Android+apps

Before packaging for the iOS ad hoc distribution, you need to generate a distribution certificate and distribution provisioning profile. See Distributin
.g iOS apps

To package an IPA file for Ad Hoc distribution, run:

appc run -p ios -T dist-adhoc [-R <DISTRIBUTION_CERTIFICATE_NAME> -P
<PROVISIONING_PROFILE_UUID> -O <OUTPUT_DIRECTORY>]
Example
appc run -p ios -T dist-adhoc -R "Pseudo, Inc." -P
"FFFFFFFF-EEEE-DDDD-CCCC-BBBBBBBBBBBB" -O ./dist/

If you omit any of the optional parameters, the CLI will prompt you with options.

iTunes store

Before packaging for the iTunes Store, you need to generate a distribution certificate and distribution provisioning profile, and have an iTunes
Connect account. See .Distributing iOS apps

To package an APP bundle for the iTunes store, run:

appc run -p ios -T dist-appstore [-R <DISTRIBUTION_CERTIFICATE_NAME> -P
<PROVISIONING_PROFILE_UUID>]
Example
appc run -p ios -T dist-appstore -R "Pseudo, Inc." -P
"AAAAAAAA-0000-9999-8888-777777777777"

The CLI installs the package to Xcode's Organizer and launches Organizer for you to start the submission process.

If you omit any of the optional parameters, the CLI will prompt you with options.

Windows Phone Store

To package for the Windows Phone Store (ARM architecture), you need to obtain your Windows publisher ID. After you have created your
Windows Dev Center account, log in to to get your publish GUID. https://dev.windowsphone.com/en-us/Account/Summary

To package an APPX file for the Windows Phone Store, run:

appc run -p windows -T dist-phonestore [-I <WINDOWS_PUBLISHER_ID> -O
<OUTPUT_DIRECTORY>]

If you omit any of the optionals parameters, the CLI will prompt you with options.

Windows Store

To package for the Windows Store (x86 architecture), you will need a certificate. If you do not have a certificate, the CLI will launch the certificate

If you are using Mac OS X 10.9 (Mavericks), make sure you grant CLI access to the computer as described in Installing the iOS SDK:
.Note for Mavericks

Windows Phone emulator requires CLI and SDK 4.1.0 or later.

Windows Phone Publisher GUID
Prior to Release 5.0.0, you need to pass the option with your Windows Phone Publisher GUID rather than using the option with-G -I
your Windows Publisher ID.

Windows Phone emulator requires CLI and SDK 4.1.0 or later.

https://wiki.appcelerator.org/display/guides2/Distributing+iOS+apps
https://wiki.appcelerator.org/display/guides2/Distributing+iOS+apps
https://wiki.appcelerator.org/display/guides2/Distributing+iOS+apps
https://dev.windowsphone.com/en-us/Account/Summary
https://wiki.appcelerator.org/display/guides2/Installing+the+iOS+SDK#InstallingtheiOSSDK-NoteforMavericks
https://wiki.appcelerator.org/display/guides2/Installing+the+iOS+SDK#InstallingtheiOSSDK-NoteforMavericks

maker for your to create one.

To package an APPX file for the Windows Store, run:

appc run -p windows -T dist-winstore [-I <WINDOWS_PUBLISHER_ID> -R
<PFX_CERTIFICATE_FILE> -P <PFX_PASSWORD> -O <OUTPUT_DIRECTORY>]

If you omit any of the optional parameters, the CLI will prompt you with options. Prior to Release 5.0.0, the was not required.-I

Clean your build folder

If you run into issues building your application, you may need to clean your build folder. Run the command or to clean for aappc ti clean
specific platform, add the option.-p <PLATFORM>

appc ti clean [-p <PLATFORM>]
Examples
appc ti clean
appc ti clean -p ios

	Appcelerator CLI Tasks

