Managing Memory and Finding Leaks

® JavaScript garbage collection
® When Titanium releases memory
Memory leaks

® Example sources of memory leaks
Monitoring allocations on iOS
Monitoring allocations on Android
Monitoring allocations on Windows
Hands-on Practice

¢ Android notes
® References

Objective

In this section, you will learn how to monitor for and solve memory leaks in your apps. The processes for monitoring memory usage varies by
platform. You'll learn separately how to perform this feat on iOS, Android and Windows.

Contents

Let's start with a clarification: we're talking memory, not storage in this section. Memory, sometimes called RAM, is the volatile location
in which your app and its data are retained while they're being processed by the CPU. Storage is the long-term location where app data
is retained while you're not using the app or device. In a desktop computer, the distinction is a bit easier: memory is done with chips;
storage is done with the hard drive, floppy disk, or CD-ROM.

In a mobile device, both memory and storage are implemented as chips. Storage uses Flash memory chips, slow, but such chips don't
lose their contents when power is removed. Memory uses RAM-style chips (DRAM, etc.), which are fast but volatile (contents lost when
power removed).

CPUs in smartphones and tablets are amazingly advanced. The JavaScript Core and V8 interpreters that Titanium uses are quite fast and
well-optimized for mobile apps. Computation speed is rarely an issue with apps these days. Memory is typically the largest bottleneck, a factor
you'll need to actively manage as your apps grow in complexity.

In this section, we'll see what factors go into determining how much memory your app uses. We'll see how Titanium frees memory, which will
require a peek under the covers to see how JavaScript manages memory. And we'll look at issues that can cause memory leaks--memory
allocations that grow over time to the point where your app could crash.

Memory limits vary by operating system and device and are not clearly documented by the vendors. Based on our sleuthing, here are the limits
you must be concerned with:

@ iOS notes

The numbers for iOS are rough estimates. Apple does not publish information about their app termination threshold, managed by
processes called "watchdog" (responsible for monitoring) and "jetsam" (responsible for warnings/purging). App termination is controlled
entirely at the discretion of these processes and their behavior may change at any time.

The upside of this is that if you see a crash or device log referencing jetsam, this certainly indicates a memory issue.

® iPhone: Limited to 10% of system memory
® Pad: Limited to between 30-50 MB; smaller is always better
® Android: 24-32MB heap, optional "large heap" of 128MB (see here for how to enable this)

Compared to the memory space available to the desktop, these are severely restricted amounts. Furthermore, iOS, Android and Windows can
force-reclaim memory or force-quit an app when the system needs more free memory. You'll want to limit your memory use and free allocations
when you can. Let's see how JavaScript frees memory and then how you can release memory in your Titanium app.

JavaScript garbage collection

In some languages, the programmer must explicitly allocate and de-allocate memory within their programs. This manual process can take quite a
bit of work and is often the source of bugs. JavaScript instead uses an automatic technique called garbage collection. With garbage collection, the
JavaScript interpreter determines when objects are no longer needed, then destroys them to free the memory they were using.

Most modern JavaScript interpreters use a "mark and sweep" method for determining when to garbage collect objects. Periodically, execution
stops while the interpreter scans memory building a list of every object in memory. It marks those to which there is a reference (an active variable

https://wiki.appcelerator.org/display/guides2/tiapp.xml+and+timodule.xml+Reference#tiapp.xmlandtimodule.xmlReference-Androidspecificapplicationproperties

name, being a property of on object that's in use, and so forth) and those to which there are no active references. When it's done with this sweep,
the interpreter sends a "destroy" message to all of the objects that have no active references. Those object tear themselves down and release
their memory.

In this way, JavaScript automatically clears out objects that are not being used. Problems arise when you leave references to objects that you no
longer need. You can remove references by setting variables and objects to nul | when you no longer need them. This includes both variables
and objects you create to represent your app's business logic, but also objects that represent Titanium components such as Views or Images.

When Titanium releases memory

Titanium is a bridge between JavaScript and the native operating system. When you define a Titanium object, such as a Button or View, Titanium
creates a matching proxy in the native operating system. Titanium will destroy that native proxy object, freeing the memory it used, when the
corresponding JavaScript object is destroyed.

® Calling parent.r enove() then setting the JavaScript object to nul | destroys both the proxy and JavaScript object. You won't be able to
add() it to the view hierarchy later without redefining it.

To be clear, calling parent.r emove() on its own does not destroy either the JavaScript or proxy object. You must nul | the JavaScript object to
destroy its related proxy.

Destroying a parent object (setting it to nul |) will destroy any child objects as long as no other references to those child objects exist. Consider
the following code snippet to get a feel for the specifics:

var button = Ti. U .createButton({
/| paranmeters go here...

1)

var view = Ti.U .createView{

/1 sone paraneters here...

1)

vi ew. add(butt on);

/1 ... later

win.renmove(view); // view & button still exist

view = null; // deletes the view and its proxy, but not the button!

/1l conpare that to:

var view = Ti. U .createView({
/1 sonme paraneters here...
1)

view. add(Ti. U .createButton({
/| paranmeters go here...

1)

/1 ... later

wi n. renmove(vi ew);

view = null; // deletes the view, button, and their proxies

Make sure that you actively manage the Titanium objects you create, such as Windows, Views, and Buttons. Remove them from the view
hierarchy and destroy them when you no longer need them. You might do this when a user closes a "dialog box" (view) or changes tabs in your

app.

Memory leaks

Memory leaks occur when your app allocates memory but doesn't release it. Leaks occur when unintended or overlooked references to objects
remain in scope. When this happens, JavaScript can't garbage collect the objects and Titanium can't destroy the native proxies. Because the
causes of leaks vary so widely, at best we'll be able to give you some strategies to attempt in order to solve the problems. There are no "cookie
cutter” solutions for stopping memory leaks.

Example sources of memory leaks

® Hiding a View removes it from the display, but retains the object in memory. To conserve memory, call parent.r enove() and/or set the
object equal to nul I when you no longer need it, as described above.

® Declaration of an object within a closure can preserve references to an object that might no longer be needed. Moving object declarations
out of the closure (pass a reference in as a method argument) is one way to resolve this problem.

http://jibbering.com/faq/notes/closures/

® Declaring objects within a "global" event listener means those objects will remain in scope as long as the event listener exists. Global
event listeners include those set on Ti.App, Ti.Geolocation, Ti.Gesture, and so forth.

Creating and fixing a memory leak in a global event listener

functi on doSonet hi ng(_event) {
var foo = bar;

}

/1 adding this event |istener causes a nenory | eak
/'l as references remain valid as long as the app is running
Ti . App. addEvent Li st ener (' bad: i dea', doSonet hi ng);

/1 you can plug this leak by renmoving the event |istener, for exanple when the w ndow

is closed
t hi sW ndow. addEvent Li stener (' cl ose', function() {
/1 to renpve an event |istener, you nust use the exact sanme function signature

/1 as when the |istener was added
Ti . App. renoveEvent Li st ener (' bad: i dea', doSonet hi ng);

1)

Monitoring allocations on iOS

To run a Titanium app from the Xcode build, you have two choices:

1. Change your Xcode Workspace settings in Xcode > Preferences > Locations > Derived Data > Advanced > Select Custom in the
Build Location options and select Relative to Workspace from the drop down.

o0 e Locations () Locations
g 9

t @ w $ o / B N 2 = A 8 x -

General Accounts Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source Control Components. Locations. Server & Bots General Accounts Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source Control Components Locations| Server &Bots

Locations Custom Paths Build Location
Unique
Derived Data: Default [n a unique subfolder of Xcode's Derived Data location
Use h Data © Advanced... Shared Folder
n a shared subfolder of Xcode's Derived Data location

Archives: Default [
=8 © Custom _ Relative to Workspace
o Fully specify locations of build products and intermediates

. Products _ build/Products
Command Line Tools: Xcode 9.3 (9Q127n) B Commat
o o Intermediates build/Intermediates
Index Datastore _ Index/DataStore

Legacy

Use tar for legacy projects that cannot be relocated)

2. Copy the contents of your Resour ces/ (same for Alloy by including the generated Alloy code) directory to the "Resources" group in
Xcode

Lets continue! Apple's Instruments application is a handy tool for monitoring and discovering memory leaks. Here's how you can use it for this
purpose:

1. Open your app in the iOS simulator.
2. Open Instruments:
® Start Xcode and from the menu, select Xcode > Open Developer Tools > Instruments.
® In the Choose a Template window, click Allocations and click Choose.
3. Attach your application to Instruments.
a. Click Choose Target, click More... under System, then scroll down and click your app's hame.
b. Click Record. Wait a moment till data begins recording.
4. In the Instrument Detall filter box, enter a filter string, such as "Ti Ul " to show only relevant allocation information.
5. Click and use your app while watching these values in Instruments:

Column Shows Notes
Persistent Memory currently being used You may have a leak if this number continues to grow as you use your app.
Bytes by active instances of the

(or Live Bytes) object in memory

#Persistent Number of active instances of You may have a leak if this number continues to grow as you use your app.
(or #Living) the object in memory

#Transient Number of Transitory objects might or might not be in memory. It doesn't matter if this value grows

(or #Transitory) ready-to-be-garbage-collected over time. JavaScriptCore will garbage collect periodically; any transitory objects will be
instances of the object destroyed when it does so.

Total Bytes Bytes used by Living and This number will grow until garbage collection runs.

(or Overall Transitory objects

Bytes)

#Total Sum of Living and Transitory This number will grow over time.

(or #Overall)

Transient / A histogram of the current and

total accounts.
Total Bytes

[or #
Allocations
(Net /
Overall)]

If you make a change to your app, the most reliable way to gather new statistics in Instruments is to close it and start over.

1 Tracking memory more accurately
On iOS, the runtime and other systems may frequently allocate (or deallocate) objects which can't be managed directly through your
javascript code. In general, when checking your app for memory leaks, you should be filtering for objects with the "Ti " prefix.

Also note that by attaching the profiler after the app has started, you do not get any information on already-created objects until they are
touched by the memory management system. To get more accurate information, you may need to open the Xcode project generated in
your project's bui | d/ i phone folder, and choose Product > Profile, then configure the resulting Instruments launch as described
here.

Instruments2

[| Il | @ iPhone X (11.3)) B AppLeak Run 10of 1 | 00:01:10
® | Instruments
00:00.000 00:10.000 00:20.000 00:30.000
0 All Heap & Anonymous VM
@ Dirty Size
Swapped Size
Resident Size
@ Allocations ; EH Statistics) Allocation Summary
Graph | Category Persistent B...v # Persistent # Transient Total Bytes # Total
TiUITableViewRowProxy 90,00 KiB 60 0 90,00 KiB 60
TiUIButtonProxy 21,00 KiB 14 0 21,00 KiB 14
TiUIWindowProxy 19,50 KiB 13 0 19,50 KiB 13
| TiUliOSNavWindowProxy 19,50 KiB 13 0 19,50 KiB 13
| TiUlTableViewProxy 18,00 KiB 12 0 18,00 KiB 12
| TiUlLabelProxy 18,00 KiB 12 0 18,00 KiB 12
TiUITableViewSectionPro... 18,00 KiB 12 0 18,00 KiB 12
TiUINavBarButton 4,50 KiB 12 0 4,50 KiB 12
TiUIButton 1,56 KiB 2 0 1,66 KiB 2
| TiUIViewProxy 1,50 KiB 1 0 1,50 KiB 1
~ | TiUlIOSNavWindow 768 Bytes 1 12 9,75 KiB 13
| TiUIWindow 768 Bytes 1 12 9,75 KiB 13
TiUlView 768 Bytes 1 0 768 Bytes 1
TiUliIOSProxy 640 Bytes 1 0 640 Bytes 1
®v Tiul | Mark Generation Created & Persistent O All Heap & Anonymous VM &

00:40.000

Transient/Total Bytes

00:50.000

01:00.000

= O

01:10.000
i~}

Monitoring allocations on Android

Android's DDMS Tool can show you memory leaks — both memory allocations that are not freed and objects that aren't garbage collected.
Following the procedure shown here, you can watch as memory use and object allocations grow. You'll need to pair that information, with

knowledge of your app to determine where within your app the cause might be.

1. Build your app for the Android emulator at least once.
2. In your text editor, open <pr oj ect >/ bui | d/ andr oi d/ Andr oi dMvani f est . xm .

3. Copy the <appl i cat i on> node, a sample of which is shown here (your app name would vary, of course):

<application android:icon="@rawabl e/ appi con"

andr oi d: | abel =" AppLeak" andr oi d: name=" Appl eakAppl i cati on"

andr oi d: debuggabl e="f al se" >

4. Paste that into your app's tiapp.xml file, modifying the <andr oi d> node as shown:

https://developer.android.com/studio/profile/monitor.html

<andr oi d xm ns: androi d="http://schenas. androi d. conl apk/ r es/ andr oi d" >
<mani f est >
<appl i cation androi d:i con="@rawabl e/ appi con"
andr oi d: | abel =" AppLeak” andr oi d: nanme="Appl eakAppl i cati on"
andr oi d: debuggabl e="true" >
</ application>
</ mani f est >
</ andr oi d>

Notice that we've set debuggable to true and added and completed a couple of the nodes.
. Save and build your app for the Android emulator again.
. Open DDMS.

7. As shown in the screenshot below, click to select your app in the list of processes. Then, click the Show Heap Updates button (labeled #2
in the graphic).

8. On the VM Heap tab, click Cause GC to force garbage collection. Note the values listed in the Allocated and # Objects columns.

9. Here's where you'll exercise your app and watch for memory leaks. For example, if you're using the AppLeak sample app linked to below,
click the Test 1 button, click Back, and repeat. Memory and the object count in DDMS will grow, though that number includes objects that
are ready to be garbage collected.

10. Click Cause GC to force garbage collection. If there's a leak, the values of Allocated and # Objects won't return to their former values.

[eé)]

These steps don't tell you exactly what is causing the leak in your app. Unlike Instruments, DDMS doesn't clearly show which objects are
remaining in memory rather than being collected. You will need to test your app and watch the memory values to infer the potential causes of the
leak.

800 . Dalvik Debug Monitor
[E] o] | -4 | o] { Info = Threads —-1--| Allocation Track
Name

Heap updates will happen after every GC for this client

¥ emulator-556 Online
E 2 IL Heap Size Allocated Free % Used # Objects

com.android.defcontainer
COIM.SVOX.pico
com.appcelerator.appleak 325

5 I
SVEIEMIpHOCRSS B0 k) 15.070 MB 4.113 MB 980.234 k81.12% 84,867 | Cause GC
com.android.phone 114 B3 3
com.android.inputmethod.latin 108 %
com.android.launcher 118 Y Display: | Stats
com .alndmid‘se{{ings 119 :%’-» Type Cofint Total Size Smallest Largest Median Averag:
android.process.acore 146 i free 13046.914 K 16 B 235.344 K 64B 371F
cam google.process.gapps 162 > data object 9,00 2.090 MB 168 744B 328 378
com.android.alarmclock 185 > class object ,894475.648 K 168 B 176 B 168 B 168
com.android. music 195 5 1-byte array (byte[], boolean[]) 1,963 280.617 K 248 2.148 KB 328 146
com.android. protips 207 ® 2-byte array (short[], char(]) 14,35 845.883 K 24 B 15.523 KB 48 B 60
comzandigiciglickseanch Dox et 1 = 4-byte array (object[], int[], flpatl)/ 6,515460.172 K 24 B 16.023 KB 488 721
android.process.media 225 > 8-byte array (longll, doublell) 137 8.422 KB 328 2.000 KB 328 62
com.android.mms 238 % non-Java object 398 33.570 KB 16 B 8.023 KB 328 86 ¢
com.google.android.apps.maps:F %
com.android.email 70 %, Watc h

%

S

%

. these

Monitoring allocations on Windows

Microsoft Visual Studio has "Diagnostic Tools" for monitoring memory usage.

1. Open Visual Studio.

2. Select Debug > Performance Profiler... from Visual Studio menu.

3. Select Choose Target drop down list and choose target to profile. For instance choose Installed App... for monitoring installed Windows
Store app. This tool also supports analyzing target against simulators and remote machine. Please refer to Remote Debugging for more
information.

http://msdn.microsoft.com/query/dev14.query?appId=Dev14IDEF1&l=EN-US&k=k(vs.debug.remote.overview)&rd=true

Report20170515-1359.diagsession R X

¥ Analysis Target

B3

Choose
Target ™

@ %2800

Running App...
Attach to a running Windows Store App

Installed App...
Launch an installed Windows Store App

Internet Explorer on Windows Phone...
Browse to a web page on a Windows Phone

Executable
Launch an executable file (.exe)

ASPNET
Launch an ASP.MET application running on |15

4. Choose Memory Usage from Available Tools section, to investigate application memory to find issues such as memory leaks.

Report20170515-1623.diagsession & X

Available Tools

Application Timeline
Examine where time i
troubleshooting is

pentin your application. Useful when
< like low frame rate

Memory Usage £}
Investigate application memory to find issues such as memory
leaks.

Not Applicable Tools

Energy Consumption

Examine where energy is consumed in your application

Performance Wizard

CPU Sampling, Instrumentation, .NET Memory allocation, and
Resource Contention

5. Start monitoring by clicking Start

> Analysis Target
Installed App
[‘”é com.appceleratorsample.hyperloop_2.1.0.0_x86_d7<8pgvss6ysm
Change Local
Target ™

CPU Usage
See where the CPU is spending time executing your code.
Useful when the CPU is the performance bottleneck

Network

Examine information about each network operaticn in your
application, including HTTP request and response headers,
payloads, cookies, timing data and more

HTML Ul Responsiveness
Examine where time is spent in your website or application

GPU Usage

Examine GPU usage in your DirectX application. Useful to
determine whether the CPU or GPU is the performance
bottleneck

JavaScript Memory

Investigate the JavaScript heap to help find issu
memory leaks

s such as

6. When you want to take memory snapshot of the application, push Take snapshot button.

File Edit View Project Build Debug Team Tools Test Analyze Window Hel
[8- E P
Report20170811-1359.diagsession # X
B Stop |EhTake Snapshot

- ebug - in - ocal Machine -
Debug Win32 P Local Machi

Diagneostics session: 28 seconds

. 10s 20= 30s

4 Memory (MB)
214

Take snapshot

7. Then Visual Studio shows native heap and allocation details when you take snapshot and Visual Studio finishes diagnostics session.

FlE EQT View PTOJECT BUND UEDUG I€AM 10015 IEST ANAyZE WINGOW HEp

ie-o|B-2 |9 - -] Debug + winxz = B Local Machine = Native Only

Snapshot #1 (Repor...1-1407.diagsession) + X [

Native Heap

@ View Settings filters are applied (Just My Code)

Identifier Count + Size (Bytes) Module
4 Heap 89717 17,803,285
4 [External Code] 89,709 17801077 [External Code]
b [Unknown frame from TitaniumWindows.dil] 75364 9129456 TitaniumWindows.d
[Self] 8,073 3321878

b <lambda_b9105050802834ea4b5Te 1acTb0433 16b>noperator) 5021 5081815 Win0Clssicexe
b WinMainCRTStartup 534 101,753 Win10Clessic.axe
b [Unknown frame from TitaniumWindows_Utili-dll] 258 45445 TitaniumWindows_Utility.dll
I [Unknewn frame from conert140_spp.dil] 183

35304 concrt140_appadl

[> [Unknown frame from ucrtbased.dll] 123 63,252 ucrtbased.dll

b [Unknewn frame from TitaniumWindows_Network.dll 65 7194 TitaniumWindews_Networkll
b [Unknown frame from veruntime140d_app.di] 25 1800 veruntime140d_app.dil
b [Unknown frame from veruntime140_app.dli] 20

200 veruntimel140_app.dll

[» [Unknown frame from tiptsf.dil] 18 2,066 tiptsfdll

b [Unknown frame from corecirdll]

3 8032 coreclrdll
I [Unknewn frame from TitaniumWindows_Global dil] 7 744 TitaniumWindows_Global.dil
b [Unknown frame from TitaniumWindows_Tidl] 5 438 TitaniumWindows_Tidll
4 [Unknewn frame from careclrdll] 8 2208 coreclrdl
4 [Unknown frame from corecirdll] 8 2208 coreclrdll
4 [Unknown frame from coreclrdil H 2208 coreclrdll
Allocations
Identifier Address Object Type
[oonm pomeromincat o]
b [External Code] 0x5a23000
b [Unknewn frame from carachrdil] 0xa58d000
b [Unknown frame fram corechr.dil] 0xa556000

For more information about Profiling Tools please refer to Running Profiling Tools With or Without the Debugger.

Hands-on Practice
Goal

You'll examine an app that has a memory leak deliberately included. You'll apply various fixed and check your work until you have eliminated the
leak.

(This lab is written to work on iOS / macOS. See the notes at the end of the lab for Android and Windows information.)

https://msdn.microsoft.com/en-us/library/mt695328.aspx

Steps

w

~

11.

. Download or clone the AppLeak project from Github. Extract it and then import the project into Studio or your CLI workspace. Confirm

that the tiapp.xml file has appropriate values for your environment then close that file.

. Opentest 1. s in Studio or your Editor. This file contains the leak, which you will fix.
. Build the project for the iPhone or iPad simulator.
. Open Instruments and attach it to your app's process:

a. In the Choose a Template window, click Allocations and then click Choose.
b. Click Choose Target, Attach to Process, then under System, click AppLeak.
c. Click Record. Wait a moment till data begins recording.

d. In the Instrument Detail filter box, enter Ti Ul Tabl e.

. In the simulator, click the Test 1 button. In Instruments, the # Living column for Ti Ul Tabl eVi ewRowPr oxy should show 5 objects are in

memory; these objects correspond to the rows in the table. Close the modal window, then click Test 1 again. This time, # Living should
increase to 10. The original 5 rows were not released and 5 new rows are allocated in memory. While the actual usage is small, if you
were to repeatedly show this window enough times the app would exhaust its available memory and crash.

. Close the simulator. That will stop the data recording in Instruments.
. In Studio, int est 1. j s, examine the code and speculate on the cause of the leak.
. Add this code after the existing app-level event listener:

test 1wi n. addEvent Li stener (' cl ose', function() {
Ti . App. renoveEvent Li st ener (' bad: i dea', doSonet hi ng);

1)

. Build your app for the simulator again.
. Repeat the Instruments testing steps listed above. This time, you should see the numbers in the # Transitory column increase as you

open and close the Test 1 window. These values represent objects that have been garbage collected. You might see # Living go up
above the 5 active rows occasionally; this simply reflects Instruments reacting more slowly than you clicking through the app. Note that
because these objects are managed by garbage collection, you may not see them released immediately.

Close the Simulator and Instruments; don't save the log results.

The app-level listener added within bui | d() remains in scope after the window is closed. This forces the objects the window contains to remain
in scope, which means they cannot be garbage collected. When bui | d() runs again, a new window and table are created, which also cannot be
garbage collected. You've got a leak! By removing the event listener when the window closes, the rest of the objects can be marked as ready for
garbage collection. Even though a new set of objects are created by bui | d() , the old ones are gone from memory and this leak is fixed.

Android notes

Memory leaks can be a problem for Android, even though we didn't highlight that platform in this lab. You can use the DDMS tool, and its
Allocation Tracker component to watch for such leaks. We choose to use Instruments in this lab because the output is by far more obvious and

the step

s to discover a leak are simpler.

References

O'Reilly's JavaScript: The Definitive Guide, section 11.3 Garbage Collection
Video: Your Apps are Leaking, by Rick Blalock at Codestrong 2011
Titanium Mobile Best Practices and Recommendations

Summary

In this section, you learned how memory is managed by JavaScript and Titanium. You learned that you must actively manage memory by actively
managing the allocation and destruction of Titanium objects. You also learned how to use Instruments to monitor memory usage and potential
leaks for iOS development.

https://github.com/appcelerator-developer-relations/appc-sample-app-leak
http://docstore.mik.ua/orelly/webprog/jscript/ch11_03.htm
http://vimeopro.com/appcelerator/codestrong-2011/video/29804284
https://wiki.appcelerator.org/display/guides2/Best+Practices+and+Recommendations

	Managing Memory and Finding Leaks

